The wave equation

1. Suppose we have a square room with one wall at $80^{\circ} \mathrm{C}$, an adjacent wall at $60^{\circ} \mathrm{C}$ and the other two walls at $20^{\circ} \mathrm{C}$. What will the temperature distribution be throughout the room be if break each wall into three intervals? The unknowns are indicated by u_{1} through u_{4} indicating the ordering of the linear equations in the answers.

80	80	80	80
20	u_{1}	u_{2}	60
20	u_{3}	u_{4}	60
20	20	20	60

Answer:

80	80	80	80
20	47.5	57.5	60
20	32.5	42.5	60
20	20	20	60

2. Suppose that the wall opposite the hottest wall is insulated. How does this change the temperatures?

Answer:
>> [4 -1 -1 0 ; -1 40 -1; -1 0 3 -1; 0 -1 -13$]$ \ [100 14020 60]'

80	80	80	80
20	50.737	61.263	60
20	41.684	54.316	60
20	$*$	$*$	60

3. Suppose that the hottest wall is replaced with one that is also insulated. Without reworking the mathematics, what do you expect the temperature distribution to be throughout the room?

Answer:

$*$	$*$	$*$	$*$
20	33.333	46.667	60
20	33.333	46.667	60
$*$	$*$	$*$	$*$

4. Suppose you have a twisting hallway that has insulated walls, but one end of the hallway is in contact with an exterior door that is at $1^{\circ} \mathrm{C}$ and the other is one that is kept at a warm room temperature at $25^{\circ} \mathrm{C}$. Assume that the hallway is not heated in any way. What is the temperature throughout the hallway?

$*$	25	$*$	$*$	$*$	$*$	$*$	$*$
$*$	u_{1}	$*$	u_{13}	u_{14}	u_{15}	u_{16}	$*$
$*$	u_{2}	$*$	u_{12}	$*$	$*$	u_{17}	$*$
$*$	u_{3}	$*$	u_{11}	$*$	u_{19}	u_{18}	$*$
$*$	u_{4}	$*$	u_{10}	$*$	u_{20}	$*$	$*$
$*$	u_{5}	$*$	u_{9}	$*$	u_{21}	u_{22}	$*$
$*$	u_{6}	u_{7}	u_{8}	$*$	$*$	u_{23}	$*$
$*$	$*$	$*$	$*$	$*$	$*$	1	$*$

Answer:

```
>> A = 2*diag(ones(23,1)) - diag(ones(22,1),1) - diag(ones(22,1),-1);
>> b = zeros(23,1);
>> b(1) = 25; b(end) = 1;
>> A \ b
ans =
    24.0000
    23.0000
    22.0000
    21.0000
    20.0000
    19.0000
    18.0000
    17.0000
    16.0000
    15.0000
    14.0000
    13.0000
    12.0000
    11.0000
    10.0000
        9.0000
        8.0000
        7.0000
        6 . 0 0 0 0
        5.0000
        4.0000
        3.0000
        2.0000
```

5. Does the answer in the last question make sense?

Answer: Yes, as you go away from the warmer door, the temperature should drop along the length of the hallway, even if it meanders.

